我们可以运行源码,查看他的方法执行顺序加以验证
static void load_categories_nolock(header_info *hi) {
bool hasClassProperties = hi->info()->hasCategoryClassProperties();
size_t count;
/// C++ block
auto processCatlist = [&](category_t * const *catlist) {
for (unsigned i = 0; i < count; i++) {
category_t *cat = catlist[i];
Class cls = remapClass(cat->cls);
locstamped_category_t lc{cat, hi};
if (!cls) {
// Category's target class is missing (probably weak-linked).
// Ignore the category.
if (PrintConnecting) {
_objc_inform("CLASS: IGNORING category \\?\\?\\?(%s) %p with "
"missing weak-linked target class",
cat->name, cat);
}
continue;
}
// Process this category.
if (cls->isStubClass()) { //是否是基类rootClass
// Stub classes are never realized. Stub classes
// don't know their metaclass until they're
// initialized, so we have to add categories with
// class methods or properties to the stub itself.
// methodizeClass() will find them and add them to
// the metaclass as appropriate.
if (cat->instanceMethods ||
cat->protocols ||
cat->instanceProperties ||
cat->classMethods ||
cat->protocols ||
(hasClassProperties && cat->_classProperties))
{
objc::unattachedCategories.addForClass(lc, cls);
}
} else {
// First, register the category with its target class.
// Then, rebuild the class's method lists (etc) if
// the class is realized.
// 实例方法
if (cat->instanceMethods || cat->protocols
|| cat->instanceProperties)
{
if (cls->isRealized()) {//若cls已经初始化了,则重新编译该类的方法列表
attachCategories(cls, &lc, 1, ATTACH_EXISTING);
} else {
// 调用unattachedCategories 类的addForClass方法
// 注册分类并将其加入到当前class
objc::unattachedCategories.addForClass(lc, cls);
}
}
// 类方法
if (cat->classMethods || cat->protocols
|| (hasClassProperties && cat->_classProperties))
{
if (cls->ISA()->isRealized()) {
attachCategories(cls->ISA(), &lc, 1, ATTACH_EXISTING | ATTACH_METACLASS);
} else {
objc::unattachedCategories.addForClass(lc, cls->ISA());
}
}
}
}
};
/// 执行block
processCatlist(hi->catlist(&count));
processCatlist(hi->catlist2(&count));
}
// Attach method lists and properties and protocols from categories to a class.
// Assumes the categories in cats are all loaded and sorted by load order,
// oldest categories first.
// 加载分类方法的核心操作
// cls:类对象 OR 元类对象,cats_list:分类列表
static void
attachCategories(Class cls, const locstamped_category_t *cats_list, uint32_t cats_count,
int flags)
{
if (slowpath(PrintReplacedMethods)) {
printReplacements(cls, cats_list, cats_count);
}
if (slowpath(PrintConnecting)) {
_objc_inform("CLASS: attaching %d categories to%s class '%s'%s",
cats_count, (flags & ATTACH_EXISTING) ? " existing" : "",
cls->nameForLogging(), (flags & ATTACH_METACLASS) ? " (meta)" : "");
}
/*
* Only a few classes have more than 64 categories during launch.
* This uses a little stack, and avoids malloc.
*
* Categories must be added in the proper order, which is back
* to front. To do that with the chunking, we iterate cats_list
* from front to back, build up the local buffers backwards,
* and call attachLists on the chunks. attachLists prepends the
* lists, so the final result is in the expected order.
*/
// 先分配固定内存空间来存放方法列表、属性列表和协议列表
constexpr uint32_t ATTACH_BUFSIZ = 64;
// 对象方法列表 OR 类方法列表
/*
mlists 是一个二维数组
[
[category01_m_list], 第一个分类的方法列表category01_m_list: [method_t, method_t, method_t, ...]
[category02_m_list], 第二个分类的方法列表category02_m_list: [method_t, method_t, method_t, ...]
]
*/
method_list_t *mlists[ATTACH_BUFSIZ];
// 属性列表:是二维数组[[property_t, property_t, ....], [property_t, property_t, ....]]
property_list_t *proplists[ATTACH_BUFSIZ];
// 协议列表:是二维数组[[protocol_ref_t, protocol_ref_t, ....], [protocol_ref_t, protocol_ref_t, ....]]
protocol_list_t *protolists[ATTACH_BUFSIZ];
//用于记录操作次数,当等于64时会被置为 0
uint32_t mcount = 0;
uint32_t propcount = 0;
uint32_t protocount = 0;
bool fromBundle = NO;
// 是否是元类:YES 元类, NO 类
bool isMeta = (flags & ATTACH_METACLASS);
/*
struct class_rw_ext_t {
DECLARE_AUTHED_PTR_TEMPLATE(class_ro_t)
class_ro_t_authed_ptr<const class_ro_t> ro;
method_array_t methods;
property_array_t properties;
protocol_array_t protocols;
char *demangledName;
uint32_t version;
} rwe;
*/
auto rwe = cls->data()->extAllocIfNeeded();
/// cats_count 分类总数
for (uint32_t i = 0; i < cats_count; i++) {
/// 获取分类
auto& entry = cats_list[i];
/// 得到分类的方法列表:isMeta YES 类方法列表,NO 实例方法列表
method_list_t *mlist = entry.cat->methodsForMeta(isMeta);
if (mlist) {
if (mcount == ATTACH_BUFSIZ) { /// 当mlists中存储了64个元素,就把对象/类方法添加到 cls 中
prepareMethodLists(cls, mlists, mcount, NO, fromBundle, __func__);
rwe->methods.attachLists(mlists, mcount);
mcount = 0;
}
// cattegory 实例/类方法列表天机到mlists数组中
// mcount = 0
// ATTACH_BUFSIZ = 64
// ATTACH_BUFSIZ - ++mcount = 63,以此推理,先编译的分类方法数组会放在mlists底部,所以最后编译的分类方法列表会放在整个方法列表大数组的最前面
mlists[ATTACH_BUFSIZ - ++mcount] = mlist;
fromBundle |= entry.hi->isBundle();
}
// 同上面一样取出的是分类中的属性列表proplist加到大数组proplists中
// proplists是一个二维数组:[[property_t, property_t, ....], [property_t, property_t, ....]]
property_list_t *proplist =
entry.cat->propertiesForMeta(isMeta, entry.hi);
if (proplist) {
if (propcount == ATTACH_BUFSIZ) {
rwe->properties.attachLists(proplists, propcount);
propcount = 0;
}
proplists[ATTACH_BUFSIZ - ++propcount] = proplist;
}
protocol_list_t *protolist = entry.cat->protocolsForMeta(isMeta);
if (protolist) {
if (protocount == ATTACH_BUFSIZ) {
rwe->protocols.attachLists(protolists, protocount);
protocount = 0;
}
protolists[ATTACH_BUFSIZ - ++protocount] = protolist;
}
}
if (mcount > 0) {// 将剩余没有添加到cls 中的对象/类方法添加到 methods数组中
prepareMethodLists(cls, mlists + ATTACH_BUFSIZ - mcount, mcount,
NO, fromBundle, __func__);
// 将分类的所有对象方法或者类方法,都附加到类对象或者元类对象的方法列表中
rwe->methods.attachLists(mlists + ATTACH_BUFSIZ - mcount, mcount);
if (flags & ATTACH_EXISTING) {
flushCaches(cls, __func__, [](Class c){
// constant caches have been dealt with in prepareMethodLists
// if the class still is constant here, it's fine to keep
return !c->cache.isConstantOptimizedCache();
});
}
}
// 将分类的所有属性附加到类对象的属性列表中,这里运用了数组指针 运算操作,proplists + ATTACH_BUFSIZ - propcount,这个操作会把数组指针移动到未attach的位置
rwe->properties.attachLists(proplists + ATTACH_BUFSIZ - propcount, propcount);
// 将分类的所有协议附加到类对象的协议列表中,这里运用了数组指针 运算操作,proplists + ATTACH_BUFSIZ - propcount,这个操作会把数组指针移动到未attach的位置
rwe->protocols.attachLists(protolists + ATTACH_BUFSIZ - protocount, protocount);
}
ATTACH_BUFSIZ:阈值,在for中mlists存储了ATTACH_BUFSIZ个分类,就吧mlists中存储的方法 添加到类信息中
mcount:用于记录存储了多少个分类方法,在到达ATTACH_BUFSIZ 会置为0
mlists:临时变量用于存储分类的方法列表
void attachLists(List* const * addedLists, uint32_t addedCount) {
if (addedCount == 0) return;
if (hasArray()) { // 存在数组
// many lists -> many lists
// 这里是把类的地址重新分配新的地址加 newCount 也是分类的创建个数,
// 而老的分类信息重新复制一下内存,通过 i-- 倒着取值,所以最先编译的会在最后面,
// 获取旧数组元素的个数
uint32_t oldCount = array()->count;
// 计算新数组的元素个数
uint32_t newCount = oldCount + addedCount;
// 重新分配内存空间,以newCount
array_t *newArray = (array_t *)malloc(array_t::byteSize(newCount));
/// 将数组的count赋值为最新的值(newCount)
newArray->count = newCount;
/// 将旧的数组的count更新到最新的值(newCount)
array()->count = newCount;
/**
* 递减遍历(从最大下标向最小坐标遍历),将就数组里的元素从后往前的依次放到新数组里
* oldCount = 2
* addedCount = 1;
* newCount = 3;
* newArray[3];
* array()->lists[1] 放到 newArray->lists[1 + 1]
* 就数组最后的一个元素,放到新数组的最后一个坐标,
* 依次类推这里就可以说明最后编译的分类方法会被优先执行
* array()->lists[0] 放到 newArray->lists[0 + 1]
*/
for (int i = oldCount - 1; i >= 0; i--)
newArray->lists[i + addedCount] = array()->lists[i];
// 将新增加的元素从前往后的依次放到新数组里
for (unsigned i = 0; i < addedCount; i++)
newArray->lists[i] = addedLists[i];
// 是否旧的数组
free(array());
// 赋值新数组数据
setArray(newArray);
validate();
}
else if (!list && addedCount == 1) { //不存在旧数组 并且 添加 1 个新元素
// 0 lists -> 1 list
list = addedLists[0];
validate();
}
else { //其他情况
// 1 list -> many lists
Ptr<List> oldList = list;
/// 旧数组元素个数
uint32_t oldCount = oldList ? 1 : 0;
/// 新数组元素个数
uint32_t newCount = oldCount + addedCount;
/// 重新分配内存空间,以newCount
setArray((array_t *)malloc(array_t::byteSize(newCount)));
array()->count = newCount;
/// 如果存在旧数组,就把旧数组的元素放到数组的最后一个位置
if (oldList) array()->lists[addedCount] = oldList;
/// 将新元素从0到addedCount 依次添加到数组里
for (unsigned i = 0; i < addedCount; i++)
array()->lists[i] = addedLists[i];
validate();
}
}